
in a HI

US Army Corps
of Engineers
Construction Engineering
Research Laboratories

USACERL Technical Report FF-95/05
January 1995

Fundamental Database Process
Issues in Object-Oriented Knowledge Representation

by
R. Alan Whitehurst
Mehdi T. Harandi
Jane Wang

The Department of Defense has identified
simulation and modeling as technologies critical to
national security. The U.S. Army Construction
Engineering Research Laboratories (USACERL)
has recognized the need to provide a more
integrated approach to model development and to
extend the object-oriented representation to allow
more sophisticated uses of knowledge-based tools
that support the complex requirements of
simulation and modeling.

This research investigated fundamental issues in
knowledge representation and object-oriented
modeling to provide an extension of the
object-oriented formalism that would better support
knowledge-based programming tools and
techniques. Object-oriented and frame-based
approaches are compared. Three aspects of these
approaches are examined: the philosophy behind
the approach, its methodology, and its
implementation. An augmented object-oriented
representation is proposed to provide a greater
capability to express knowledge about objects, to
provide better structure to organize knowledge,
and to allow tools to be built to reason about the
knowledge stored in the representation.

DUG Qü./ ^-j'x'i^xj

19950330 m
Approved for public release; distribution is unlimited.

The contents of this report are not to be used for advertising, publication,
or promotional purposes. Citation of trade names does not constitute an
official endorsement or approval of the use of such commercial products.
The findings of this report are not to be construed as an official
Department of the Army position, unless so designated by other authorized
documents.

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED

DO NOT RETURN IT TO THE ORIGINATOR

USER EVALUATION OF REPORT

REFERENCE: USACERL Technical Report FF-95/05, Fundamental Database Process: Issues in Object-
Oriented Knowledge Representation

Please take a few minutes to answer the questions below, tear out this sheet, and return it to USACERL. As user
of this report, your customer comments will provide USACERL with information essential for improving future
reports.

1. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which
report will be used.)

2. How, specifically, is the report being used? (Information source, design data or procedure, management
procedure, source of ideas, etc.)

3. Has the information in this report led to any quantitative savings as far as manhours/contract dollars saved,
operating costs avoided, efficiencies achieved, etc.? If so, please elaborate.

4. What is your evaluation of this report in the following areas?

a. Presentation:

b. Completeness:

c. Easy to Understand:

d. Easy to Implement:

e. Adequate Reference Material

f. Relates to Area of Interest:

g. Did the report meet your expectations?

h. Does the report raise unanswered questions?

i. General Comments. (Indicate what you think should be changed to make this report and future reports
of this type more responsive to your needs, more usable, improve readability, etc.)

5. If you would like to be contacted by the personnel who prepared this report to raise specific questions or
discuss the topic, please fill in the following information.

Name:

Telephone Number:

Organization Address:

6. Please mail the completed form to:

Department of the Army
CONSTRUCTION ENGINEERING RESEARCH LABORATORIES
ATTN: CECER-IMT
P.O. Box 9005
Champaign, IL 61826-9005

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection ol information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE
January 1995

3. REPORT TYPE AND DATES COVERED
Final

4. TITLE AND SUBTITLE

Fundamental Database Process: Issues in Object-Oriented
Knowledge Representation

6. AUTHOR(S)

R. Alan Whitehurst, Mehdi T. Harandi, and Jane Wang

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Construction Engineering Research Laboratories (USACERL)
P.O. Box 9005
Champaign, IL 61826-9005

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

USACERL
ATTN: CECER-ECS
PO Box 9005
Champaign, IL 61826-9005

FUNDING NUMBERS

4A161102
AT23
SE-EB2

8. PERFORMING ORGANIZATION
REPORT NUMBER

FF-95/05

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

Copies are available from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

12a. DISTRIBUTION /AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The Department of Defense has identified simulation and modeling as technologies critical to national security. The
U.S. Army Construction Engineering Research Laboratories (USACERL) has recognized the need to provide a more
integrated approach to model development and to extend the object-oriented representation to allow more sophisticated
uses of knowledge-based tools that support the complex requirements of simulation and modeling.

This research investigated fundamental issues in knowledge representation and object-oriented modeling to provide an
extension of the object-oriented formalism that would better support knowledge-based programming tools and
techniques. Object-oriented and the frame-based approaches are compared. Three aspects of these approaches are
examined: the philosophy behind the approach, its methodology, and its implementation. An augmented object-oriented
representation is proposed to provide a greater capability to express knowledge about objects, to provide better
structure to organize knowledge, and to allow tools to be built to reason about the knowledge stored in the
representation.

14. SUBJECT TERMS

object-oriented modeling
simulation
knowledge-based systems

15. NUMBER OF PAGES
54

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified
MSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

SAR
Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std 239-18
298-102

USACERL TR FF-95/05

Foreword

This study was conducted under Project 4A162720AT23, "Basic Research in Military

Construction"; Work Unit SE-EB2, "Advanced Collaborative Systems."

The work was performed by the Facility Management Division (FF) of the Infrastruc-

ture Laboratory (FL), U.S. Army Construction Engineering Research Laboratories

(USACERL). Dr. Mehdi T. Harandi and Jane Wang are associated with the

Department of Computer Science, College of Engineering, University of Illinois,

Urbana. Alan Moore is Chief, CECER-FF, and Acting Chief, CECER-FL. The

USACERL technical editor was William J. Wolfe, Information Management Office.

LTC David J. Rehbein is Commander and Acting Director of USACERL, and Dr.

Michael J. O'Connor is Technical Director.

7oSesei«s.2!2S

if—

'l

v\ J
\

USACERL TR FF-95/05

Contents

SF 298 1

o
Foreword

1 Introduction

1.1 Background 5

1.2 Objective 6

1.3 Approach 6

1.4 Mode of Technology Transfer 6

2 Knowledge Representations 7

2.1 Philosophy of Frames and Objects 9

2.2 Modeling Knowledge 10

2.3 Implementation 12

2.4 Summary 14

3 Extended Object Representation 15

3.1 Introduction 15

3.2 Increasing Semantic Information 15

3.3 Syntax and Semantics 19

3.4 Inheritance 21

3.5 Defining Class and Perspective Through an Example 26

4 Conclusions 36

4.1 Summary 36

4.2 Future Research 37

4.3 Summary 39

Bibliography 40

Appendix: Example Model View Controller 43

Distribution

USACERL TR FF-95/05

1 Introduction

1.1 Background

The Department of Defense has identified simulation and modeling as technologies

critical to national security [22]. Research in this area by the U.S. Army Construction

Engineering Research Laboratories (USACERL) has included the development of

combat engineering modeling and simulation technologies in support of the U.S. Army

Engineer School (USAES), and of simulation language technologies in support of the

U.S. Army Training and Doctrine Command (TRADOC) [14, 8, 7, 12, 11, 13, 9, 10, 16,

26]. During the course of this research, USACERL recognized the need to provide a

more integrated approach to model development and to extend the object-oriented

representation to allow more sophisticated uses of knowledge-based tools to support

the complex requirements of simulation and modeling.

To address the need for an integrated approach to simulation technologies, USACERL

is developing an Integrated Systems Language Environment (ISLE), a software

engineering environment based upon an object-oriented database. ISLE integrates a

number of software technologies into a single environment that will meet the

requirements for the development of the next-generation of integrated modeling and

simulation applications. These technologies include: object-oriented programming,

process-based discrete event simulation, and knowledge-based programming.

One goal in creating ISLE is to develop an environment that is accessible to groups

of cooperating domain experts who are not necessarily computer programmers. To

meet this goal, a suite of knowledge-based tools are envisioned that will help users

navigate class hierarchies, thereby extending, or specializing, the existing software

artifacts to meet specific requirements. For the knowledge-based tools envisioned for

the ISLE environment to reason about the models and simulations created under

ISLE, a single data/knowledge representation is sought that would support both the

object-oriented notion of encapsulation and inheritance, and the knowledge-based

paradigm of declarative programming and expressibility.

USACERL TR FF-95/05

1.2 Objective

The objective of this research was to investigate fundamental issues in knowledge

representation and object-oriented modeling to provide an extension of the ob-

ject-oriented formalism that would better support knowledge-based programming tools

and techniques, specifically, in the ISLE software engineering environment.

1.3 Approach

Object-oriented and frame-based knowledge representation schemes were compared

(Chapter 2). The facilities of knowledge representation languages, such as frames and

semantic networks, were analyzed and the representations used by object-oriented

programming languages were extended to provide better support for these knowl-

edge-based capabilities. The syntax and semantics of an extension of object-oriented

representation, which incorporates many features of the frame-based approach, were

proposed (Chapter 3). The added capabilities include the ability to:

• attach more semantic information to the structure/operations of a class speci-

fication

• combine class specifications with more flexibility

• maintain information to allow the navigation of the inheritance network and

other relationships between objects to facilitate reasoning.

Directions for this and future research were outlined (Chapter 4).

1.4 Mode of Technology Transfer

It is anticipated that the concepts developed under this extended object-oriented

knowledge representation will be incorporated into the IMPORT/DOME languages and

the ISLE software engineering environment.

USACERL TR FF-95/05

2 Knowledge Representations

The representational framework in which a problem is phrased has a definite impact

on the approach taken, and consequently, on the ease of solution [27]. This study-

seeks a knowledge-representation formalism that will be both powerful and flexible

enough to capture the knowledge in the domain of simulation and modeling, and that

will still mesh well with the object-oriented programming paradigm.

A programming paradigm is considered to be object-oriented if it exhibits three

characteristics:

• encapsulation

• information hiding

• polymorphism.

Object-oriented representations are encapsulated, in that the data and the operations

that manipulate that data are contained in a single syntactic specification (usually

refered to as the class of the object) and access to the data can occur only through

well-defined interfaces. Information hiding refers to the ability to make public a

particular interface, and to hide the details of the implementation. Finally,

polymorphism is the ability to allow a particular object instance to react to a request

for processing as is most appropriate to the object's class. These three attributes

combine to support and encourage software reuse, which is one of the main contribu-

tions of the object-oriented approach.

Object classes occupy a position in a class hierarchy (in the case of single inheritance)

or directed acyclic graph (in the case of multiple inheritance) that relates classes based

on common features. Therefore, an object is a set of data types and operations that is

related to other objects through inheritance. We are searching for

knowledge-representation formalism that will allow us to retain the benefits of the

object-oriented paradigm, while supporting extended semantic reasoning about objects

and relations.

At first glance, a frame-based representation seems a natural choice for integration

with an object-oriented language; frames are structured much like objects and

incorporate a version of inheritance. One of the problems encountered in attempting

USACERL TR FF-95/05

a thorough comparison of the two approaches is that there seems to be multiple

definitions of just what "frame" and "object-oriented" are supposed to mean. In [6],

Hayes comments on the confusion this causes with respect to frames when he writes:

... It is not at all clear now what frames are, or were ever intended to be. I will
assume that frames were put forward as a formal language for expressing
knowledge ... but it is important to distinguish this from two other possible
interpretations ... which one might call the metaphysical and the heuristic.

Hayes goes on to describe these three uses of the term "frame." According to Hayes,

Metaphysical frames embody a philosophy that influences how knowledge is

structured and what knowledge is determined to be of importance. Formal frames are

a notation for expressing knowledge, and Heuristic frames are a computational device

for organizing stored representations and managing the process of retrieval and

inference.

It is interesting to note that a confusion regarding terminology is not limited to the

concept of frames:

The explosion of interest in object-oriented approaches in the last few years has led
to a proliferation of definitions and interpretations of this much-used and
much-abused term. As a consequence, it can be very difficult for a newcomer to
understand and evaluate what is meant by a claim that a programming language
or a piece of software or a user interface is 'object-oriented.' [21]

Johnson [15] describes three separate uses of the term "object-oriented," which he

classifies as the mystical, European, and American views. In the mystical view,

"object-oriented" refers to a philosophy of computing in which systems are composed

entirely of objects that can communicate only by sending messages. In the European

view, "object-oriented" is a modeling methodology where each entity in a system being

modeled is represented by an entity in the program. Finally, the American view

defines "object-oriented" as programming languages or systems that exhibit certain

characteristics and promote the use of a certain set of programming techniques, such

as: data abstraction, encapsulation, polymorphism, and inheritance.

Figure 2.1 shows the relationship between the two sets of definitions. These

definitions for both frame and object-oriented approaches can be arranged in order of

abstraction (metaphysical and mystical being the most abstract). At the highest level

of abstraction, both concepts involve a philosophy of knowledge selection and

encapsulation. At the intermediate level, the definitions involve a methodology for

knowledge expression. At the lowest level, both definitions involve a set of strategies

or techniques of reasoning or computation. Unfortunately, this mapping is not

USACERL TR FF-95/05

Metaphysical

Formal

Heuristic

Philosophy

Model

Techniques

Mystic

European

American

Figure 2.1. Relationship between definitions of "frame" and "object-oriented."

straightforward. Certain aspects of the mystical view of objects are more closely

related to expressibility and language constructs, while some aspects of the European

view (of objects as a modeling methodology) have more in common with the philosophy

of frames. The remainder of this report will attempt to adopt Hayes' framework and

address the comparison between objects and frames at each of these three conceptual

levels. Although this may be an artificial distinction in some respects, it does provide

a framework for structuring a discussion about frame and object concepts.

2.1 Philosophy of Frames and Objects

The original concept of frames in relation to knowledge representation is attributed

to Marvin Minsky [19], who felt that logic-oriented approaches, based on collections

of simple fragments, were too localized and unstructured to account for common-sense

reasoning. Minsky felt that knowledge was inherently interrelated and structured.

The essence of Minsky's theory was that when one encounters a new situation, one

selects from memory a structure (which Minsky called a frame) that carries with it

certain assumptions that are subsequently adapted to fit reality.

According to Minsky, each frame carried information about how to use the frame, what

to expect next, and what to do if expectations were not confirmed. Each frame also

supplied a set of default values that could be altered to make the prototypical frame

correspond to a specific concept or object. Further, these values had associated

constraints that affected the way they could be changed and that could propagate the

change to other frames. Therefore, knowledge was bundled into a set of interrelated

10 USACERL TR FF-95/05

structures, each encapsulating a certain aspect of the knowledge domain. Frames are

related into networks of interdependencies, such that changes to the values of one

frame may propagate throughout the system. Computation is achieved by altering the

values of a frame and allowing those changes to propagate throughout the frame

network.

The metaphysical view of object-oriented systems shares much in common with the

philosophy of frames as espoused by Minsky. In the object-oriented view, the

functionality of a system is realized by a community of cooperative agents, each

performing specific functions and communicating with other agents via messages.

New behaviors are recognized and accommodated by reproducing existing similar

objects and specializing their functionality. Computation is achieved by introducing

a message to a particular object, which responds by performing its function and/or

passing a set of messages to other objects. At the philosophical level, the fundamental

principle behind both frames and objects is the same: knowledge and/or complex

behavior can be encoded as a set of simpler, interrelated structures that encapsulate

various aspects of the system.

2.2 Modeling Knowledge

A frame is a structure intended to represent a prototypical situation. It is comprised

of named slots (or fields), which may themselves contain frames, or which may contain

simple data. Through semantics associated with the slot names (e.g., ISA to denote

that one thing is an instance of another, like a "dog" is an instance of a "mammal"), a

form of inheritance is achieved that enables default reasoning and facilitates the

sharing of knowledge. Winston [27] proposed a simple way to conceptualize

frame-based representations: "A frame is a collection of semantic net nodes and slots

that together describe a stereotyped object, act, or event."

Winston's definition implies two important aspects of frame-based representations:

first, that they are related to semantic nets; and second, that the notion of inheriting

values from a stereotypical prototype is integral to the frame-based approach.

Figure 2.2 illustrates Winston's view of the relationship between semantic networks

and frame representations: that frames can be thought of as imposing a structure on

top of a semantic network.

This example shows a portion of a semantic network representing knowledge about the

relationships between bricks and toy blocks. The ellipses represent objects, and the

USACERL TR FF-95/05 11

AKO

COLOR

Figure 2.2. Relationship between frames and semantic networks.

arcs represent the relationships between objects; therefore, reading from the semantic

network, one sees that a brick is considered to be a kind of block, that bricks are

normally red, but that blocks are normally blue, and that that there are kinds of blocks

that are not bricks (namely, wedges). The area enclosed by the shaded polygon

represents a "brick" frame.

An object is an encapsulation of a certain aspect of the system being modeled, but the

emphasis is on the objects in the system rather than the processes they perform. An

object is described in terms of its attributes and its behaviors. According to Meyer:

Object-oriented design may be defined as a technique that, unlike classical design,
bases the modular decomposition of a software system on the classes of objects the

system manipulates, not on the functions the system performs. [18]

12 USACERL TR FF-95/05

The conjunction of the attributes of all the objects in a system describes the state of the

system. The behavior of an object describes the ways in which that object can affect

the state of the system. The functionality of the system is realized by cooperation

between these objects. The power of this philosophy is realized in the ability to create

a model of reality that preserves a one-to-one mapping between entities in the

real-world and entities in the model.

2.3 Implementation

The difficulty in attempting to compare implementations of frame and object systems

is that there are so many different frame and object systems, each with its own set of

implementation decisions. It is feasible in the scope of this report to describe a frame

or object system implementation only in the most general terms.

Frame systems provide a mechanism for structuring knowledge into frames, and

organizing frames into hierarchies of prototypical knowledge. Each frame consists of

a number of slots, and each slot contains information specific to the frame. A slot may

also have an attached predicate that encodes procedural knowledge associated with

the frame. However, to realize his concept of frame-based reasoning, Minsky proposed

a computational approach that combined: prototypes, defaults, multiple perspectives,

analogies, and partial matching [20]. Minsky's ideas lead to the development of a

number of knowledge-representation architectures, one of which was the Knowledge

Representation Language (KRL) [1]. KRL was built as part of a long-term project

whose goals centered around language understanding. The viewpoint of the KRL

project was that reasoning is dominated by a process of recognition in which new

objects and events are compared to a stored set of expected prototypes, and that the

key part of the recognition process was a description matcher that served as a

framework for comparing descriptions.

Object-oriented languages provide a set of mechanisms for realizing an object-oriented

design and enforcing an object-oriented methodology during implementation. These

include:

• encapsulation

• information hiding

• inheritance

• abstraction.

Encapsulation, as has already been discussed, is the ability to structure state and

behavior into individual syntactic and semantic packages. Information hiding relates

USACERL TR FF-95/05 13

to the restriction that objects only communicate through methods; therefore, an object

does not have access to the structure of any other object. If information is needed

about another object, the object must be queried through one of its methods. This

decouples the internal structure of the object from its external behavior. Inheritance

is the ability of one class of objects to be based on another class—in other words, to

inherit the structure and functionality of the other class. Finally, abstraction is the

ability to create objects that capture abstract aspects of a set of concrete object classes,

and to use that abstract object to share its structure and behavior among those similar

concrete object classes.

The motivation for incorporating these techniques into software methodology is to

improve the software engineering process. This improvement is to be realized by

maximizing the ability to reuse software design and implementation.

... if one accepts that reusability is essential to better software quality, the
object-oriented approach—defined as the construction of software systems as
structured collections of abstract data type implementations—provides a promising

set of solutions.[18]

Although the motivation behind the concepts is quite different, there are a number of

striking similarities between the two approaches:

Both decompose a system into a collection of objects and relationships.

Both encapsulate or bundle knowledge into groups of attributes.

Both use a similar structure (named slot-value pairs).

Both incorporate a notion of inheritance.

Both include a notion of individual active entities.

The concept of matching frames to find prototypical ancestors has no analog in

object-oriented approaches, and embodies the major difference between the two

approaches. A frame-based system uses introspection and default reasoning to

dynamically increase and refine its model. When a frame-based system is given a task

that it does not expect, ideally it can apply partial matching and analogy to attempt

understanding. There is an implicit assumption in the object-oriented approach that

the model is consistent and complete.

It is considered an error for an object to receive a request (i.e., a message) that it (or

one of its direct ancestors) does not understand. These are design decisions; there is

nothing intrinsic in the object model that dictates that unexpected messages must be

treated as errors; however, the implications in terms of software reuse refer back to

the original motivation behind the development of the two paradigms.

14 USACERL TR FF-95/05

In object-oriented approaches, inheritance and polymorphism provide mechanisms for

sharing implementations, with the ultimate goal of producing reusable module,

sometimes referred to as "software ICs." In frame-based approaches, inheritance

provides a mechanism for prototypical reasoning, where assumptions are inherited and

refined as specific information becomes available.

2.4 Summary

This chapter has explored the relationship between knowledge representation

techniques based on semantic networks and frames, and the object-oriented software

engineering model. This relationship has been examined at three separate levels of

abstraction: at the philosophical level, the modeling level, and the implementation

level. It was found that the philosophy and modeling aspects of these two formalisms

are remarkably similar. However, it is noted that the motivation for the two

formalisms are quite different. Frame-based systems are motivated by a desire to

model prototypical reasoning, while object-oriented systems desire to enhance the

software-engineering process and maximize software reuse. This difference in

motivation manifests itself in implementations based on these two systems. In the

next chapter, an extension of the object-oriented representation is proposed that

integrates many of the facilities commonly found in frame-based implementation

systems.

USACERL TR FF-95/05 15

3 Extended Object Representation

3.1 Introduction

The basic framework of the proposed knowledge representation is an augmented
object-oriented representation. It is an attempt to provide greater capability to express
knowledge about objects, to provide better structure to organize knowledge, and to
allow tools to be built to reason about the knowledge stored in the representation. The

added features are:

attaching slot facets to attributes to provide more semantic context
using perspectives to group together the relevent information about an object
adding a bidirectional link for the superclass/subclass relation
adding a bidirectional link for the class/perspective relation
adding constraint, invariants, security, and integrity checking either on the
operation/attribute or on the class itself

• adding bidirectional association and aggregation links to describe the relation
between objects.

In the following subsections, each topic is examined individually.

3.2 Increasing Semantic Information

3.2.1 Slot Facets

In comparing frame-based systems with semantic nets [24, 27, 23, 4, 3, 2, 28], one finds
that it is possible to attach slot facets to the attributes to provide more semantic
content to attributes and classes. Slot facets are used in frame-based systems to let
users specify more information about an attribute in addition to its data type. Possible
slot facets are cardinality facet, range facet, minimum value facet, maximum value
facet, default value facet, prefer value facet, if_needed condition facet, and pre-
/post-condition facet [5].

Range facet is used to specify the valid range for the attribute value. Minimum/
maximum value facet is used to specify the possible smallest/largest value for the

16 USACERL TR FF-95/05

attribute value. Default value facet is used to specify the default value for an attribute

when there is no value given for it. When an attribute is accessed and no value is

found, if_needed condition facet can be used to specify the way to find the value.

If_needed condition facet can also be used to specify security/integrity checking of the

attribute value during an updating request. Similarly, the pre/post-condition facet can

be used when the attribute is accessed or updated.

In addition to the slot facets similar to what frame-based systems have provided, we

also introduce ADD and DELETE facets. They are used to modify the data type of an

inherited attribute during specialization of a class or perspective.

3.2.2 Perspectives

Observation shows that, depending on the context in which an object is used,

attributes with the same syntax may have different semantic meanings. Also,

depending on the context in which an object is used, the object might use a different

set of attributes and operations. This implies that attributes and operations of an

object can be partitioned into different groups depending on the context in which they

are used. This introduces the notion of perspective into the object structure (similar

to Winston's work) [27].

Structurally, a perspective is similar to a class. It has its own hierarchy, attributes,

and operations. It decides its own subperspectives; and a perspective has its own

inheritance. Just like classes, perspectives can also have abstract operations

implemented at the object level.

Perspectives may be seen as a way to put all the relevent information about an object

together in the object level and then partition this information into different groups

according to the context in which they are used. Common attributes for all contexts

are left alone and kept with the object as the basic/default component of the object.

For example, instead of having a Queue class with three subclasses FIFO_Queue

(First-In, First-Out), LIP'O.Queue (Last-In, First-Out), and Priority_Queue, a Queue

class could have all the attributes and operations common to all queue objects defined

in the default component section. Thus three perspectives (FIFO_Queue_P,

LIFO_Queue_P, and Priority_Queue_P) will be defined in the Queue class and have

the perspective-dependent operations like "enqueue" and "dequeue" defined within

each perspective. So if an object is a Queue class with FIFO_Queue_P perspective,

then it has the default attributes of the Queue class, and it always adds new elements

at the end of the queue and removes elements from the beginning of the queue.

USACERL TR FF-95/05 17

To provide reusability as well as privacy of perspectives, perspectives may be defined

either globally or locally. Globally defined perspectives can be shared by different

classes and perspectives. Locally defined perspectives are defined within a class

definition, and are only visible to the class itself. A global perspective can be used

either by being attached to a class definition or by specializing it into subperspectives.

Local perspectives can be used when specializing/instantiating the class that defines

it. The following section gives an example of how to define and use perspectives.

Constraints among perspectives can be specified using XOR and SET. For instance,

FIFO_Queue_P, LIFO_Queue_P, and Priority_Queue_P, in the Queue class, should be

mutually exclusive. So, in the definition, we can do "XOR(FIFO_Queue_P ... ,

LIFO_Queue_P ..., Priority_Queue_P ...)" to specify the mutual exclusive constraints

among the perspectives. SETs are used when a class can be instantiated/specialized

with any combination of perspectives specified within the set. This provides some

multiple perspective inheritance. For example, instead of defining customer class,

traveller class, and travelling customer class, a Person class with name, age, and

homeAddress (i.e., the common attributes of all three classes) can be defined as the

default attributes. And within Person class, Traveller_P perspective and Customer_P

perspective, which only contain information relevent to traveller and customer,

respectively, can also be defined. While defining these two perspectives in Person

class, doing "SET(Traveller_P ... , Customer_P ...)" allows a class to be a subclass of

Person class with only Traveller_P perspective, or with only Customer_P perspectives,

or with both Traveller_P and Customer_P perspectives, which corresponds to traveller

class, customer class, and travelling customer class. A discussion of using XOR and

SET is in the inheritance section (p 21).

3.2.3 Bidirectional links for superclass/subclass and class/perspective relation

In the traditional object-oriented system, the only system provided relation is the is_a

(superclass/subclass) relation. Subclass knows its superclass(es) and can access

information about its superclass(es). But, a class itself has no knowledge of its

subclasses, if it has any subclasses at all. From the standpoint of knowledge

representation in a class hierarchy, to know more about a class besides the attributes

and operations defined within the class itself requires going upward as well as going

downward in the tree from that class node.

Going upward in the tree yields information about superclasses (ancestors) that will

give more understanding about the current class. For example, the class "Ameri-

can_Car" might only have attributes about the manufacturers, with slot facets listing

some constraints about the attributes to ensure that the manufacturers are American

companies. Also, the class might have some attributes relating to regulation in the

18 USACERL TR FF-95/05

United States. But these attribute definitions alone do not apply exclusively to a class

of cars. Traversing upward in the class hierarchy will reveal that the current node is

a subclass of a Car class, with a motor, wheels, doors, speed, ... attributes that

suggest the class of cars.

Going downward in the tree from a class node reveals information about subclasses

that tell more about the current class. For example, the class "transportation" may

have attributes of starting place, destination, and speed. But these attributes may

apply to many sub-classes: airplane, automobile, bicycle, and onfoot. (Under an

automobile class, information about different individual cars which might reveal that

it is a class of cars. So this information can be propagated back up to the transporta-

tion class.) Similarly the information in the airplane, bicycle, and other subclasses can

be propagated back up to the transportaion class.

With this information, the transportation class is shown to be composed of things that

can move objects from one place to another. Thus if the current class is too specific,

traversing upward in the hierarchy gives more general information about a class. If

the class is too general, then traversing downward reveals more detailed information

about the class. In this way, adding bidirectional links for superclass/subclass and

class/perspective relation gives a greater capability to reason about classes and

perspectives.

3.2.4 Constraints and Invariants

In addition to attributes and operations, there are things about an object that remain

true. There is a need somehow to associate invariants with the object representation

and to store these properties in the object level. For example, suppose that the data

object needs to be sorted at all times. It would be best to store this information in the

object level so that it can be used in the programming process.

In traditional object-oriented systems, information about constraints of a class is

normally embedded in the operations of the class. Here it is proposed to add

constraints, invariants, security, and integrity checking either on the

operation/attribute or on the class itself. Constraints specified on the object can be

checked by an operator when it is invoked to determine whether the operation should

be executed.

3.2.5 Association and Aggregation

Often the pointer to an object is stored in another object's attribute with a descriptive

name to describe the relation between two objects [25]. But most of the time what is

USACERL TR FF-95/05 ™

really meant is that there is an association relation between these two objects.

Associations and aggregations may provide more semantics than just the descriptive

attribute name. Both of these relations are bidirectional links. Thus, along with an

association there is a reverse association. Similarly, with an aggregation there is a

reverse aggregation. An attribute name describes the relation between objects with

an association/aggregation type and a slot facet that specifies the reverse relation. A

cardinality slot facet can be used to specify the cardinality of the relation.

For example, suppose an employee works for a company, and a company employs the

employee. So, creating an Employee class that has an attribute named workjbr,

which is an association, includes a reverse association, employee_of, linked to a

Company class. Also specified is that the cardinality of this workjbr relation is

many-to-1. Since it is a bidirectional link, in the Company class, an association link

employer_of will automatically be created that links to the Employee class. And this

employer_of relation has cardinality 1-to-many. So, if a Company class called

company_x has John_Doe as an instance of the Employee class, and companyjc is the

company that John_Doe works for, then John_Doe will be automatically added into the

employer_of attribute in company_x that contains a collection of Employee class.

Aggregation represents the part_of relation, and reverse aggregation represents the

whole_of relation. Aggregation is a subset of association, except that it is transitive

and anti-symmetric.

For example, an airplane has engines, and engines are part of an airplane. To specify

this relation, in the Engine class, a power_component_of attribute is added, that is an

aggregation, is linked to an Airplane class, and has a reverse aggregation whole_of.

Since the link is bidirectional, an aggregation whole_of that links to the Engine class

will be created automatically in the Airplane class.

So, modeling relation between objects, using bidirectional association and aggregation

links instead of using pointers will produce a more expressive representation.

3.3 Syntax and Semantics

The syntax of the representation language is similar to C++ and can be very simply

defined:

class-def =» classname inheritance [constraint]? class-body

inheritance — '(' supername [inhspec]' ')'

supername -» name

20 USACERL TR FF-95/05

inhspec

II

'with ALL'

'::' [perspective]

constraint - '(Constraint:' decl-clause ')'

class-body - '{ [var-dec] [meth-def] [pers-dec]? T

var-dec - inst-vname '(' var-spec ')' slot-list

var-spec

II

II

11

classname [inhspec]

basic-type

'Association'

'Aggregation'

slot-list - '(' [slot-facet]*')'

slot-facet

II

II

II

II

'Cardinality:' integer

'Range:' range

'Minimum:' integer

'Maximum:' integer

'Default:' number ' ' string

meth-def

meth-spec

pers-dec

pers-def

pinh-spec

pers-body

expr

classname

supername

'Prefer:' number ' |' string

'Type:' classname

'ReverseAssoc:' string

'ReverseAggreg:' string

'Constraint:' decl-clause

'If needed:' expr-list

'Precondition:' expr-list

'Postcondition:' expr-list

methname "(Method)' [meth-spec] '(' expr-list'}'

'(INPUT Cardinality:' integer ')'

'(INPUT:' [var-dec ')']*

'(OUTPUT Cardinality:' integer ')'

'(OUTPUT:' inh-spec ')'

"(Constraint:' decl-clause ')'

'XOW [pers-def]*')'

"SET('[pers-def']*')'

[pers-def]*

persname '(' classname [pinh-spec]'')' [constraint]' pers-body

'with ALL'

'::' [perspective]*

persname

'Perspective'

'{' [var-dec]* [meth-def]* [pers-dec f '}'

use natural language

name

name

USACERL TR FF-95/05 21

methname

instvname

persname

name

name

name

name

[a —z][a—z 0 — 9]*

The class declaration has class name, superclass (possibly with a list of

perspectives), instance variables (attributes), methods (operations), and local

perspectives (possibly with SET and XOR constraints).

The perspective declaration is very similar to the class declaration. It has

perspective name, superperspective or superclass (possibly with a list of

perspectives), attributes, operations, and possibly local perspectives with SET

and XOR constraints.

The declaration of instance variable has variable name followed by either a

basic type, enumerated type, or a class name (possibly with a list of

perspectives), and slot facets.

The method declaration is a subclass of Method class with slot facets on the

input and output of the method, followed by an expression-list.

The basic classes are Object, Perspective, Method, and Reference.

Object has Objlnit method, which initializes the instance variables of a class.

Scope of a perspective depends on the place where it is defined. If a

perspective is defined within a class or another perspective, then it is only

visible within that class/perspective. Otherwise, it is visible globally to

everyone.

Only one level nesting of XOR and SET is allowed to prevent complex nested

structure.

Method can be overloaded through use of input/output slot facets of the

method and perspectives.

Class variables and meta-class operations can be provided at the class level

to help reason about the knowledge stored in the class.

3.4 Inheritance

Class inheritance is similar to traditional object-oriented systems, where subclasses

inherit default attributes and operations from superclasses. Similarly, perspectives

also inherit default attributes and operations from superperspectives. Constraints

specified for a class are also inherited to the subclasses.

In addition to inheriting default attributes and operations, a class can also inherit

perspectives from its superclasses. Deciding how an object of a class can inherit

perspectives from its superclasses was based on an observation of two phenomena,

22 USACERL TR FF-95/05

"mutually exclusive relation among defined perspectives" and "inheriting multiple

perspectives." These two observations lead to two proposed features for inheriting

perspectives: (1) to make the inherited perspectives as part of the defaults (i.e., in

addition to default attributes and operations of a class), and (2) to provide some

constraint predicates to specify the mutual exclusion and multiple perspectives

inheritance among perspectives defined in a class. The following subsections elaborate

on these features.

3.4.1 Mutually Exclusive Relation

Often by defining perspectives for a class, what is really meant is that the in-

stantiation/specialization of the class can only have one of the defined perspectives.

This exhibits a mutually exclusive relation among the defined perspectives.

Using the previously mentioned queue example, a Queue class is defined with three

different perspectives: FIFO Queue P, LIFO Queue P, and Priority Queue P. The

Queue class itself has default attributes that define queue and queue elements. But

the "enqueue" and "dequeue" operations are defined in each perspective. Clearly, there

should be a mutual exclusion relation among these three perspectives since a FIFO

queue needs to remove elements from the beginning of the queue, in contrast with a

LIFO queue, which needs to remove elements from the end of the queue. So, a

specialization of Queue class with FIFO Queue P perspective cannot have

LIFO Queue P nor Priority Queue P perspectives at the same time, and vice versa.

On the other hand, to provide better code-reuse, it is best to delay execution of this

constraint as long as possible. This means that a subclass of Queue class may inherit

all three perspectives (instead of inheriting only one perspective) and may delay the

mutual exclusion constraint until the time when one perspective is selected for

specialization or instantiation (i.e., to perform the constraint only when necessary).

For example, class C2 may become a subclass of Queue class with all perspectives

inherited even though there is a mutual exclusivity constraint on these perspectives.

Within class C2, Queue class may be refined by including other attributes and

operations. The selection of one of the three perspectives can be performed either

when the class C2 is instantiated, or when another class C21 is created to be a

subclass of class C2 with a subset of perspectives from Queue class. A good example

of this kind of delay constraint selection is the Server class defined in the Mod-

el-View-Controller[17] (included in the Appendix to this report).

USACERL TR FF-95/05 23

3.4.2 Multiple Perspective Inheritance

A class might want to inherit more than one perspective either implicitly or explicitly.

Using the Queue class defined earlier as an illustration, when a class FIFO Queue is

created to be a specialization of Queue class with perspective FIFO Queue P, what is

really meant is that all the subclasses/instances of FIFO Queue class should have

FIFO characteristic. Suppose perspectives PI and P2 are defined to be local

perspectives within FIFO Queue class. If class Cl is created as a subclass of

FIFO Queue with perspective PI, then, in addition to perspective PI, class Cl should

also inherit perspective FIFO Queue P from FIFO Queue class (originated from

Queue class). This is an example of implicit multiple perspective inheritance.

There are also needs for explicit multiple perspective inheritance. A class or an

instance of a class may need to have more than one perspective. For instance, in the

Traveller-Customer example used in the previous section, in addition to traveller,

customer, the class travelling customer would also be desirable. So, instead of having

three different classes: traveller, customer, and travelling-customer, it is possible to

create a Person class that has Traveller P and Customer P perspectives. Then, a

traveller is just a subclass of Person class with Traveller P perspective. A customer

is a subclass of Person class with Customer P perspective. And a travelling customer

is a subclass of Person class with both Traveller P and Customer P perspectives.

With multiple perspective inheritance, one can create a class from another class with

more than one perspective inherited from its superclass. On the other hand, not all

the combinations of different perspectives make sense. Thus, constraints must be

placed on and among perspectives.

3.4.3 New features for inheriting perspectives

The following two features are proposed for inheriting perspectives: (1) inherited

perspectives will be a part of the defaults (this should take care of the implicit multiple

perspective inheritance problem), (2) perspective constraint predicates, XOR and SET

will be provided with delayed selection (i.e., execution of the constraint is delayed until

necessary). XOR is used to specify the mutually exclusive constraint among

perspectives, and SET is used to explicitly specify the constraint of multiple

perspective inheritance among a set of perspectives.

The following is an example of using XOR. Let Cl be a subclass of Object class, with

default attributes and operations defined as Dl (i.e., Dl is the block that defines the

attributes and operations). Let Pll, P12, and P13 be perspectives defined within Cl.

24 USACERL TR FF-95/05

To specify the mutual exclusion relation among Pll, P12, and P13 with XOR predicate,

do:

C1 (Object)

D1

XOR(

P11 (Perspective) {...},

P12(Perspective) {...},

P13(Perspective){...}

) I* end XOR */

Possible specializations of Cl are:

C11(C1){...}

C11 (C1 with P11) {...}

C11 (C1 withP12){...}

C11 (C1 withP13){...}

C11 (C1 with ALL) {...}

Note the last one is used for the delayed specialization. On the other hand, an

instance of Cl can only have one of the following perspectives (if it has any): Pll, P12,

or P13.

The following is an example of using SET. Let Cl be a subclass of Object class, with

default attributes and operations defined as Dl (i.e., Dl is the block that defines the

attributes and operations). Let Pll, P12, and P13 be perspectives defined within Cl.

To specify the constraint for inheriting multiple perspectives among Pll, P12, and P13

with SET predicate, we do:

C1 (Object) {

D1

SET S1 (

P11 (Perspective) {...},

P12(Perspective) {...},

P13(Perspective){...}

) /* end SET 7}

This means that an instantiation/specialization of Cl can have the following different

combination of perspectives selection: {}, {Pll}, {P12}, {P13}, (Pll, P12}, {P12, P13),

{Pll, P13), and {Pll, P12, P13K Examples of specialization of Cl are:

C11(C1){...}

C11 (C1 with P11) {...}

C11 (C1 withP12){...}

C11 (C1 withP13){...}

USACERL TR FF-95/05 25

C11 (C1 withP11,P12){...}

C11 (C1 withP12, P13){...}

C11 (C1 withP11,P13){...}

C11 (C1 with S1){...}

XOR and SET can also be used together to specify relations among perspectives. The

following is an example of using XOR and SET together.

Let Cl be a subclass of Object class, with default attributes and operations defined as

Dl (i.e., Dl is the block that defines the attributes and operations). Let Pll, P12, P13,

P21, P22, and P23 be perspectives defined within Cl.

C1 (Object) {

D1

XOR(

P11 (Perspective) {...},

P12(Perspective){...},

SET S1 (
P21 (Perspective) {...},

P22(Perspective) {...},

P23(Perspective) {...}), /* end SET */

P13(Perspective) {...}

) /* end XOR */}

This means that a specialization of Cl can have the following different combination

of perspectives selection:

C11(C1){...}

C11 (C1 with P11){...}

C11 (C1 withP12){...}

C11 (C1 with S1){...}

C11 (C1 withP13){...}

C11 (C1 with P21){...}

C11 (C1 with P22) {...}

C11 (C1 with P23) {...}

C11 (C1 withP21,P22){...}

C11 (C1 with P22, P23) {...}

C11 (C1 withP21,P23){...}

C11 (C1 with ALL) {...}

Note, that an instance of Cl can have the same combination of perspectives as

specialization of Cl displayed above, except for the last one. A limit is also placed on

the number of XOR and SET that can be used for each class definition. At most, only

one XOR and one SET can be used for each object definition. This avoids the complex

nested SET and XOR, which will lead to representations that are hard to understand

and manage.

26 USACERL TR FF-95/05

3.5 Defining Class and Perspective Through an Example

This section offers a step-by-step guide to defining classes and perspectives by

incrementally building a simple company-employee system. The company-employee

system consists of Person Class, Company Class, Employee Class, Manager Class, and

Customer Perspective.

Person Class has some default attributes and two perspectives (Traveller and

Customer perspectives). Company Class is a subclass of Object, and also has some

default attributes and two perspectives (InfoPhoneNum perspective, which contains

a list of phone numbers for inquiries, and Customer perspective, which allows a

company to act as a customer when dealing with other companies).

Employee Class is a specialization of Person Class with a Traveller perspective (since

employee might do company travels). Employee Class itself does not have default

attributes, but inherits the default attributes from its superclass according to the

inheritance scheme. In addition to Traveller perspective, it also has Company

perspective that contains information pertaining to company, PayRoll perspective,

which contains information regarding pay check, deduction, and other payroll

information, and Employee Purchase perspective, which allows an employee to act as

an individual customer of the company he/she works for. An employee's salary should

be less than or equal to his/her manager's salary if he/she has a manager.

Manager Class is a subclass of Employee Class, except that it has a collection of

Employee Class that a manager would manage. And a manager's salary should be

greater than or equal to every employee that he/she manages.

There is also one global perspective, which is Customer perspective. It is a subclass

of Perspective, and it provides some common attributes about customers (i.e., billing

Address, credit, ...).

The following sections outline the steps starting from defining classes, defining global

perspectives (which is similar to defining classes), defining local perspectives, to

defining subclasses and two different ways of specializing global perspectives. The

convention used in the example is to capitalize the first character of the name of class

and perspective. The name of perspective always ends with " P" for easier reading.

Perspective and Object are the basic types, so in String, Integer, Address, ... Class,

perspective, and attribute are parenthesized immediately followed the declaration.

Comments are preceeded with "/*" and ended with "*/" similar to programming

conventions in C.

USACERL TR FF-95/05 27

3.5.1 Defining Classes

A class/perspective definition is composed of the following parts: its name, superclass,

default attributes and operations, locally defined perspectives, and inclusion/-

specialization of global perspectives. The following will focus on specifying the default

attributes and operations. For example, a Person class, with four default attributes:

firstName, lastName, age, and homeAddress, can be defined as follows:

Person(Object){
firstName(String)

lastName(String)

age(lnteger)

homeAddress(Address)

Similarly, a Company class, with three default attributes: name, stAddress, and

divNum, can be defined as follows:

Company(Object){
name (String)

stAddress (Address)

divNum (String)

3.5.2 Defining Global Perspectives

Customer P is a globally defined perspective, and has two attributes: billingAddress,

and credit. It can be included in another class (i.e., a perspective of a certain class) or

as a superperspective of another perspective.

Customer P(Perspective){

billingAddress(Address)

credit (XOR credit card, cash, check, money order)

The following example demonstrates the inclusion of the Customer perspective in the

class definition without specializing:

Person(Object){

firstName(String)

lastName(String)

age(lnteger)

homeAddress(Address)

Customer P{}

28 USACERL TR FF-95/05

3.5.3 Defining Local Perspectives

Perspectives can also be defined locally within a class as part of its components. A

perspective can be either a subperspective of Perspective class, or a subperspective of

a global perspective. The latter is detailed in the section "Specializing Global

Perspectives: Within Subperspectives." (p 31)

Using the Person class and the Company class defined previously as the basis, a

Person class with a local Traveller P perspective can be defined as:

Person(Object){

firstName(String)

lastName(String)

age(lnteger)

homeAddress(Address)

SET(

Traveller P(Perspective)

{
age (XOR Infant Child Adult)

(IF NEEDED: calculated from the age in person)

preferredAirport (String)

(IF NEEDED: Calculate from the state in the homeAddress)

}.
Customer P{}

Within the locally defined Traveller P perspective, there are two attributes, age and

preferredAirport. The age attribute is an enumerated type and is calculated from the

age default attribute in Person class. The preferredAirport attribute is a string type

and is obtained from the state attribute in the homeAddress default attribute in

Person class. These attributes are only accessible within Person class, and are not

defined outside of Person class context.

Company class with a locally defined InfoPhoneNum P perspective, which contains

phone numbers for various information inquiries, can be defined as follows:

USACERL TR FF-95/05 29

Company(Object){

name (String)

stAddress (Address)

divNum (String)

InfoPhoneNum P(Perspective){

personnel(PhoneNum)

receptionist(PhoneNum)

press(PhoneNum)

}

3.5.4 Defining Subclasses

Once a class is defined, it can be further refined/specialized into subclasses. There are

three ways of declaring a subclass when specifying the superclass, depending on the

number of perspectives that the subclass inherits from its superclass.

Let class B be a subclass of class A. Subclass B can inherit either zero perspectives

from A or one or more perspectives from A. Let PI, P2, and P3 be perspectives defined

in class A. Declaration of "B(A) " will make class B a subclass of class A without

inheriting any perspectives, thus only the default attributes and operations of A are

inherited by B. Declaration of "B(A with PI)" or "B(A with PI, P2)" will make class B

be a subclass of class A with perspective PI (or PI and P2). Thus, in addition to the

default attributes and operations of A, class B also inherits perspective PI (or PI and

P2). To inherit all the perspective of A, class B can be declared as "B(A with ALL)".

More detail on the subject of inheritance is included in the section on inheritance (p 22).

For example, Employee is a person who also does company travelling. Thus, it is a

subclass of Person class with Traveller perspective. And in addition to the inherited

Traveller perspective, it also has a local perspective PayRoll that contains all the

payroll information about the employee. The following is the declaration of Employee

class.

Employee(Person::Traveller P){

PayRoll P(Perspective){

deduction(Money)

tax(Money)

withhold(Money)

net(Money)

30 USACERL TR FF-95/05

Notice that here, the default attributes and operation of Employee class are the ones

that it inherited from its superclass. Employee class itself does not define its own

default attributes and operations.

3.5.5 Specializing Global Perspectives: During Inclusion

Attributes in the globally defined perspectives can be further refined, specialized, and

overwritten either by the subperspective (defined globally or locally within the class

definition) or during the inclusion of global perspectives in the class definition.

This subsection focuses on the specialization of global perspectives during their

inclusion in the class definition. An example of attribute refinement at the inclusion

time can be found in the Company class.

Based on the Company class defined earlier, a company also purchases things from

other companies. Thus, it should also have Customer perspective. But, the globally

defined Customer perspective does not specify how to find the proper billingAddress.

So, the billingAddress in the Company class must be refined so that the billingAddress

will be calculated from the stAddress attribute of the Company class. The following

example demonstrates the idea:

Company(Object){

name (String)

stAddress (Address)

divNum (String)

SET(

InfoPhoneNum P(Perspective){

personnel(PhoneNum) '

receptionist(PhoneNum)

press(PhoneNum)

},
Customer P{

billingAddress(IF NEEDED: get from the stAddress in company)

Note that the difference between the usage of global perspective in the Company class

and the Person class is that, in the Company class, the billingAddress attribute of

Customer P is further specialized. It specifies how to obtain the value of billing

Address (from the stAddress attribute in the Company class) via IF NEEDED slot.

USACERL TR FF-95/05 31

3.5.6 Specializing Global Perspectives: Within Sub-Perspectives

As mentioned earlier, attributes can also be further refined in a subperspective.

Subperspectives can be defined globally or locally within the class definition. Since

many companies provide employee purchasing programs whereby employees can

purchase company products at special discounts, an Employee purchase perspective

should be added to the Employee class. When viewed in the Employee purchase

perspective, an employee is like a customer to the company, except that the preferred

billingAddress is the homeAddress of the employee and the credit (the way to pay for

the merchandise) can be deducted from payroll in addition to the usual payment

options of a normal customer. Thus, Employee purchase perspective is a sub-

perspective of Customer perspective with a refinement of the billingAddress and the

credit attributes.

Also, since an employee is working in a company, the information about a company

should be included in the employee class. And whenever the employee is doing any

purchase for the company, the bill should go to the employee's company instead of to

the employee. So a local perspective Company P, which is a subperspective of

Company class with Customer perspective, needs to be defined for the Employee class.

In addition to the defaults that it inherits from Company class and Customer

perspective, Company P perspective also defines some other attributes relating to

Employee, i.e., employeelD, salary, title, department name, telephone number, and the

person who manages him/her. The constraint for the salary attribute is that an

employee's salary should be less than or equal to his/her manager's salary. The

definition for this Employee class is given in the following:

Employee(Person::Traveller P){

SET(
Company P(Company::Customer P){

employeelD(String)

salary(Money)
(Constraint: less than equal to(salary(self), salary(manager)))

title(TitleString)
depName(DepartmentString)

telPhone(String)

manager(Manager)

PayRoll P(Perspective){

deduction(Money)

tax(Money)

withhold(Money)

net(Money)

32 USACERL TR FF-95/05

Employee purchase P(Customer P){

billingAddress(PerferredValue: get from the homeAddress)
credit(ADD payroll)

}

Manager Class is a subclass of the Employee class with one additional attribute that

contains a collection of employees that a manager manages. And the salary of a

manager should be greater than or equal to the employees that he/she manages. It can

be defined as follows:

Manager(Employee with ALL)

(Constraint: member (each, manage),

greater than equal to (salary(self).salary(each)))

manage(Collection of Employee)

}

Note that the Employee class by itself has three different perspectives: Company P,

PayRoll P, Employee purchase P (i.e., company employee, payrolled employee, and

purchase employee.) Furthermore, a perspective can be a specialization of a certain

class (as the Company P perspective), specialization of a global perspective (as the

Employee purchase P perspective), or just a locally defined one (as the PayRoll P

perspective). Company P perspective is a specialization of Company class with

Customer P perspective, so it inherits the default attributes of Company class as well

as the attributes of Customer P that is refined in the Company class. It also defines

some more attributes for itself, i.e., employeelD, salary, etc. PayRoll P perspective is

a locally defined perspective with four default attributes. Employee purchase P

perspective is a locally defined subperspective of Customer P perspective. The credit

attribute inherits the enumerated type information from the Customer P perspective

with payroll appended to the inherited enumerated type through use of ADD.

However, this is not a very good way to define the Employee Class because information

about a company is redundantly stored in every instance of the Employee Class. A

similar problem also exists for the Manager Class. A better way to define the

Employee Class is to define the local perspective Company P as a subperspective of

the Perspective class. In addition to the attributes defined in the former Company P

perspective of the Employee Class, i.e., employeelD, salary, etc; this new Company P

perspective also defines a work for association that is linked to a Company class and

has a reverse association employer of. Similarly, for the same reason, a managed by

association can be defined for the Employee Class and the Manager Class. The

modified Employee Class and Manager Class are as follows:

USACERL TR FF-95/05 33

Employee(Person::Traveller_P){

SET(

Company_P(Perspective)

{
employeelD(String)

salary(Money)
(Constraint: less_than_equalJo(salary(self), salary(managed_* *by)))

title(TitleString)
depName(DepartmentString)

telPhone(String)

workjor

(Association)

(ReverseAssociation: employer_of)

(Type: Company)

(Cardinality: Many to 1)

managed_by

(Association)
(ReverseAssociation: manage)

(Type: Manager)

(Cardinality: Many to 1)
billingAddress(get from the billingAddress in workjor)

credit(get from the credit in workjor)

PayRolLP(Perspective)

{
deduction(Money)

tax(Money)

withhold(Money)

net(Money)

}.

Employee_purchase_P(Customer_P)

{
billingAddress(PerferredValue: get from the homeAddress)

credit(ADD payroll)

}

)

}

Manager(Employee with ALL)
(Constraint: member(each, manage),

greaterJhan_equalJo(salary(self),salary(each)))

Ö

34 USACERL TR FF-95/05

The resultant Company-Employee system is as follows:

Customer P(Perspective){

billingAddress(Address)

credit (XOR credit card, cash, check, money order)

Person(Object){

firstName(String)

lastName(String)

age(lnteger)

homeAddress(Address)

SET(

Traveller P(Perspective){

age (XOR Infant Child Adult)

(IF NEEDED: calculated from the age in person)

preferredAirport (String)

(IF NEEDED: Calculate from the state in the homeAddr* *ess)

Customer P{}

Company(Object){

name (String)

stAddress (Address)

divNum (String)

SET(

InfoPhoneNum P(Perspective){

personnel(PhoneNum)

receptionist(PhoneNum)

press(PhoneNum)

Customer Pf

billingAddress(IF NEEDED: get from the stAddress in company)

Employee(Person::Traveller P){

SET(

Company P(Perspective){

employeelD(String)

salary(Money)

(Constraint:

USACERL TR FF-95/05 35

less than equal to(salary(self), salary(managed by)))

title(TitleString)
depName(DepartmentString)

telPhone(String)

work for(Association)

(ReverseAssociation: employer of)

(Type: Company)

(Cardinality: Many to 1)

managed by(Association)

(ReverseAssociation: manage)

(Type: Manager)

(Cardinality: Many to 1)

billingAddress(get from the billingAddress in work for)

credit(get from the credit in work for)

},

PayRoll P(Perspective){

deduction(Money)

tax(Money)

withhold(Money)

net(Money)

Employee purchase P(Customer P){
billingAddress(PerferredValue: get from the homeAddress)

credit(ADD payroll)

}

Manager(Employee with ALL)
(Constraint: member(each, manage),

greater than equal to(salary(self), salary(each)))

0

36 USACERL TR FF-95/05

4 Conclusions

4.1 Summary

This study has found that the traditional object-oriented system is not powerful

enough to represent knowledge about an object, and the information stored in an object

is not enough to reason about the object. A new representation is proposed to provide

enough semantic information stored in the object structure that will help us to reason

about it.

The proposed augmented features are:

attaching slot facets to attributes to provide more semantic information

using perspectives to group together the relevent information about an object

adding a bidirectional link for the superclass/subclass relation

adding a bidirectional link for the class/perspective relation

adding constraint, invariants, security, and integrity checking either on the

operation/attribute or on the class itself

• adding bidirectional association and aggregation links to describe the relation

between objects.

For inheritance, in addition to the inheritance of a class and inheritance of a

perspective, multiple perspective inheritance was allowed and the capability of

specifying constraints among perspectives provided through the use of XOR and SET

predicates. Constraint, invariants, security, and integrity checking specified on the

operation/attribute or on the class are also inherited to the subclasses.

Advantages of using perspectives are :

• localizing the relevent information (attributes and operations)

• providing more semantic information to attributes and operations—providing

overloading of operations and attributes

• providing information at different levels of details through perspectives and

refinement.

USACERL TR FF-95/05 37

Advantages of using association and aggregation are:

• avoiding storing redundant information

• modeling the relation between objects using links instead of pointers.

4.2 Future Research

This study has proposed an extension of the object-oriented formalism that will provide

greater support for knowledge representation and knowledge-based reasoning. With

regards to this language formalism, a number of interesting questions still need to be

considered:

• whether multiple perspective inheritance is needed

• whether the ability to specify perspectives within perspectives is needed

• what the language implementation for this representation is

• how to handle naming conflicts.

4.2.1 Multiple Perspective Inheritance

In the proposed knowledge representation, "SET", "XOR", and the ability to make

inherited perspectives a part of the defaults provide some flavors of multiple

perspective inheritance. These are all alternatives to multiple inheritance. At this

point whether to provide multiple inheritance has not been determined. This issue

will be studied more in the simulation modeling domain, and addressed later.

4.2.2 Defining Perspectives within Perspectives

Being able to define perspectives within another perspective is a good feature, but one

that does not add much power to the representation. Also, the study did not encounter

any examples that require this feature. For now, one level perspective definition will

suffice. In the future, if needed, the ability to define perspectives within perspectives

can be added into the representation. Note that the current representation does not

prevent defining perspectives within perspectives.

4.2.3 The Language Implementation

The language implementation for the representation will be a combination of

imperative and declarative languages, similar to the IMPORT/DOME language

designed at USACERL [10]. The imperative part is used to define classes, perspec-

tives, attributes, and operations. The declarative part is used to describe the

38 USACERL TR FF-95/05

constraints, invariants, security, and integrity checking for the attributes, operations,

and objects as well as the slot facets for the attributes, and operations.

Based on observation, imperative languages are known to be procedural, structural,

and modular. So, it is more suitable to use imperative language to define the classes,

perspectives, attributes, and operations that require more structure and modularity.

On the other hand, declarative languages are known to be very expressive; the

theorem prover is powerful enough to deduce information from a large collection of

facts. Also, declarative languages allow one to assert facts and to define predicates.

Since one cannot foresee the type of constraints that a class, an attribute, or an

operation may have, nor is it desirable to limit the type of constraints that one can

have, it is a good idea to use the expressive declarative language to specify the

constraints and slot facets.

Constraints of an object defined by the declarative languages can be checked by the

theorem prover, when a request to access the object is made. If constraints are

violated, then the operation requested will not be executed. Also an object may want

to query another object's constraints or an attribute's slot facets. This can also be done

by the theorem prover. Since the reference to an object can be passed into the theorm

prover, the symbol table is available: reference to objects can be found and the

theorem prover can access information of other objects.

The compiler for the implementation language can be a two-phase compiler using an

object-oriented database. The first phase parses the source file, performs static

semantic checking, generates an intermediate form, and stores it in an object-oriented

database. The programming tools can be built to use the intermediate form for

debugging and running the interpreter to allow fast prototype. The second phase

converts the intermediate form into the desired programming language such as C++,

an approach currently used in the IMPORT/DOME language.

4.2.4 Naming Conflict

Because of the SET constraint for perspectives, naming conflicts might arise. A

number of possible strategies exist for dealing with such conflicts; perhaps the

simplest is to use the ordering sequence of the class/perspective being declared in a

class definition.

USACERL TR FF-95/05 39

4.3 Summary

In object-oriented approaches, inheritance and polymorphism provide mechanisms for

sharing implementations, with the ultimate goal of producing reusable modules,

sometimes referred to as "software ICs." In frame-based approaches, inheritance

provides a mechanism for prototypical reasoning, where assumptions are inherited and

refined as specific information becomes available.

Although the motivation behind the concepts is quite different, a number of striking

similarities exist between the two approaches, mostly at the philosophical and

methodological levels:

Both decompose a system into a collection of objects and relationships.

Both encapsulate or bundle knowledge into groups of attributes.

Both use a similar structure (named slot-value pairs).

Both incorporate a notion of inheritance.

Both include a notion of individual active entities.

The central issues with regards to integrating the two approaches involves some

fundamental issues: whether reusability of software maps into prototypical

knowledge; or whether software reuse can be realized in the presence of prototypical

inferencing strategies. These issues require more research, and will probably only

yield answers when these ideas are implemented in an experimental environment.

40 USACERL TR FF-95/05

Bibliography

[1] Daniel Bobrow and Terry Winograd. "An Overview of KRL, a Knowledge Representation

Language." In R. Brachman and H. Levesque, editors, Readings in Knowledge Representation,

chapter 13, pages 245-262. Morgan Kaufmann Publishers, Inc, Los Altos, CA, 1985.

[2] D.G. Bobrow and T. Winograd. "An Overview of KRL, a Knowledge Representation Language."

Cognitive Science, 1(1), January 1977.

[3] W.C. Dietrich, L.R. Nackman, and F. Gracer. "Saving a Legacy With Objects." In OOPSLA, 1989.

[4] C.L. Dym and R.E. Levitt. Knowledge-Based Systems in Engineering. McGraw-Hill, 1991.

[5] R. Fikes and T. Kehler. The Role of Frame-Based Representation in Reasoning." Communications

of the ACM, September 1985.

[6] Patrick J. Hayes. "The Logic of Frames." In R. Brachman and H. Levesque, editors, Readings in

Knowledge Representation, chapter 14, pages 287-295. Morgan Kaufmann Publishers, Inc, Los

Altos, CA, 1985.

[7] Charles Herring and R. Alan Whitehurst. Concept Design for an Object-Oriented Database

Capability in MODSIM. Letter report to U.S. Army TRADOC Analysis Command, U.S. Army

Construction Engineering Research Laboratory, 1991.

[8] C. Herring and RA. Whitehurst. "Adding Peristence to an Object-Oriented Simulation Language."

In Society for Computer Simulation Multiconference on Object-Oriented Simulation, San Diego, CA,

1991. Simulation Councils, Inc.

[9] Charles Herring. "Army Model Hierarchy = Technology*5 + Architecture + Methodology." In U.S

Army Operations Reasearch Symposium, Proceedings, November 1993.

[10] Charles Herring J. Teo, V. Karamcheti, and R Alan Whitehurst. Definition and Implementation

of the Integrated Modular Persisent Object Representation Translator (IMPORT). Technical Report

P-93/11/ADA273355, U.S. Army Construction Engineering Research Laboratories, Champaign,

IL, September 1993.

[11] Charles Herring, Biju Kalathil, and Joseph Teo. Research in Persistent Simulation: Development

of the Persistent ModSim Object-Oriented Programming language. Technical Report P-93/

07/ADA268568. U.S. Army Construction Engineering Research Laboratories, July 1993.

USACERL TR FF-95/05 41

[12] Charles Herring, Jeffrey Wallace, and R. Alan Whitehurst. Application of Object-Oriented

Programming to Combat Modelling and Simulation. Technical Report P-91/46/ADA242673. U.S.

Army Construction Engineering Research Laboratories, September 1991.

[13] Charles Herring, Jeffrey Wallace, R. Alan Whitehurst, and David Adams. "Design of an Engineer

Functional Area Model Using Next Generation Software Tools and Methodology." In U.S Army

Operations Reasearch Symposium, Proceedings, November 1991.

[14] Charles Herring and R. Alan Whitehurst. Application Profile: Requirements for Persistent

Simulation, Position Paper submitted to the DARPA Open Object-Oriented Database Workshop.

Texas Instruments, March 1991.

[15] Ralph Johnson. Cs499 Object-Oriented Programming. Class Lecture, August 1990.

[16] Biju J. Kalathil and Charles Herring. "System Support for Assembling Compatible Configurations

in an Integrated Programming Environment." Submitted to Software Configuration Management

1993, May 1993.

[17] G.E. Krasner and S.T. Pope. "A Cookbook for Using the Model-Viewcontroller User Interface

Paradigm in Smalltalk-80." Journal of ObjectOriented Programming, pages 26-49, August 1988.

[18] Bertrand Meyer. "Object-Oriented Programming." In Ted J. Biggerstaff and Alan J. Perlis,

editors, Software Reusability Applications and Experience, chapter 1, pages 1-33. Addison-Wesley,

Reading, MA, 1989.

[19] Marvin Minsky. "A Framework for Knowledge Representation." In J. Haugeland, editor. Mind

Design, pages 95-128. MIT Press, Cambridge, MA, 1981.

[20] Marvin Minsky. The Society of the Mind. Simon and Schuster, New York, 1986.

[21] Oscar Nierstrasz. "A Survey of Object-Oriented Concepts." In Won Kim and Frederick H.

Lochovsky, editors, Object-Oriented Concepts, Databases, and Applications, chapter 1. pages 3-22.

Addison-Wesley, New York, 1989. ACM Press Frontier Series.

[22] Director of Defense Research and Engineering. Defense Science and Technology Plan. July 1992.

[23] N.W. Paton and O. Diaz. "Object-Oriented Database and Frame-Based Systems: Comparison."

Software and Information Technical Journal, 1987.

[24] E. Rich and K. Knight. Artificial Intelligence. McGraw-Hill, second edition, 1991.

[251 J- Rumbaugh, M. Blaha, W. Premerlani. F. Eddy, and W. Lorensen. Object-Oriented Modeling and

Design. Prentice-Hall, 1991.

[261 R. Alan Whitehurst. "Simulation Utilizing an Interpretive Object-Oriented Rule-Based Approach."

In Raimund K. Ege, editor, Object-Oriented Simulation. Computer Simulation Society. January

1991.

42 USACERL TR FF-95/05

[27] Patrick Henery Winston. Artificial Intelligence. Addison-Wesley Publishing Company, Reading,

MA, second edition, 1984.

[281 S. J. Young and C. Proctor. "An Experimental Frame Language Based on Abstract Data Types." The

Computer Journal, 29(4), 1986.

USACERL TR FF-95/05 43

Appendix: Example Model View Controller

The following Model View Controller system uses the new representation. The Model

View Controller system is a network queue simulation system that has three parts:

model, view, and controller. The model uses servers, queues, and a token to model the

queueing network. A model can have a number of servers and each server has one

queue. A token is passed around in the queueing network; whoever gets the token gets

service time. View provides ways to look at the status of the current queueing

network. It can display this information in many different formats. Controller

mediates the interaction between a model and a view. Whenever a view wants to

display the status, it asks the controller for the data. Controller looks into the status

of the model, calculates the result, and sends it to the view for display. Each server

has a different distribution that simulates the rate of service requests coming into the

queue. Thus it is a subclass of a random number generator object. Queue can be

either FIFO, LIFO, or priority-based. Queue is a linked list of queue elements that

provides add and remove operations to add and remove elements from the queue.

/* globally defined perspective */

Queue opt P (Perspective) {

Add (Method) {};
Remove (Method) {};

Queue Elm (Object) (

item (Reference);

next (Reference);
setltem (Method)
(INPUT Cardinality: 1)

(INPUT: ref (Reference))
(OUTPUT Cardinality: 0) {

item = ref;

setNext (Method)

(INPUT Cardinality: 1)

(INPUT: ref (Reference))

(OUTPUT Cardinality: 0) •

next = ref;

}

44 USACERL TR FF-95/05

getNext (Method)

(INPUT Cardinality: 0)

(OUTPUT TYPE: (Reference)) •
return next;

}

} /* end of Queue Elm 7

Queue (Object) {

/* defaults for Queue */
numberln (Integer);

first (Reference); /* pointer 7

last (Reference); /* pointer */

Queuelnit (Method)

(INPUT CARDINALITY: 0)

(OUTPUT TYPE: Queue) {

Objlnit (self);
numberln = 0;

first = NIL;

last = NIL;
return self;

XOR(

FIFO Queue P (Queue opt P) {
Add (Method)

(INPUT: elm (Reference))

(OUTPUT Cardinality: 0)

(LOCAL VAR: new elm (Queue elm))

new elm = send NewObj(Queue Elm);
send new elm setltem (elm);

send new elm setNext (NIL);
numberln = numberln + 1;

If (numberln > 1) {

send *last setNext

(send new elm GetReference);

last = send *last getNext;
} else {

first = send new elm GetReference;

last = first;

Remove (Method)

(INPUT Cardinality: 0)

(OUTPUT: (Reference))
(LOCAL VAR: rm elm (Queue elm))

USACERL TR FF-95/05 45

If (numberln > 0) {

rm elm = send first Ref20bj;
first = send rm elm getNext;

send rm elm setNext (NIL);

numberln = numberln 1;

return (send rm elm GetReference);

} else {

return NIL:

}

}
}, /* end of FIFO Queue P7

LIFO Queue P (Queue opt P) {
Add (Method)

(INPUT: elm (Reference))

(OUTPUT Cardinality: 0)

(LOCAL VAR: new elm (Queue elm))

new elm = send NewObj(Queue Elm);

send new elm setltem (elm);
send new elm setNext (NIL);

numberln = numberln + 1;

If (numberln > 1) {
send new elm setNext (last);
last = (send new elm GetReference);

} else {
send new elm setNext (NIL);

last = (send new elm GetReference);

first = last;

Remove (Method)

(INPUT Cardinality: 0)

(OUTPUT: (Reference))

(LOCAL VAR: rm elm (Queue elm)) •

If (numberln > 0) {

rm elm = send last Ref20bj;

last = send rm elm getNext;

send rm elm setNext (NIL);
numberln = numberln 1;

return (send rm elm GetReference);

} else (
return NIL:

}

}
}, /* end of LIFO Queue P */

Priority Queue P (Queue opt P) {

46 USACERL TR FF-95/05

Add (Method)

(INPUT: elm (Reference))

(OUTPUT Cardinality: 0)

(LOCAL VAR: new elm (Queue elm)) (

new elm = send NewObj(Queue Elm);

send new elm setltem (elm);

send new elm setNext (NIL);

numberln = numberln + 1;

If (numberln > 1) {

/*** Insert it to the proper place ***/

} else {

send new elm setNext (NIL);

last = (send new elm GetReference);
first = last;

}

}

Remove (Method)

(INPUT Cardinality: 0)

(OUTPUT: (Reference))

(LOCAL VAR: rm elm (Queue elm)) {
If (numberln > 0) {

rm elm = send last Ref20bj;

last = send rm elm getNext;

send rm elm setNext (NIL);

numberln = numberln 1;

return (send rm elm GetReference);

} else {

return NIL:

} /* end of Priority Queue P */

) /* end of XOR */
} /* end of Queue 7

RandomNum (Object) {

str1, stsr2, str3, str4 (Integer);

p1,p2, p3(Real);

ip1,ip2 (Integer);

dtype (DistType);

rvtype (RVType);

InitRVObj(Method)

(INPUT Cardinality: 3)

(INPUT: lo.hi (Real); stream (Integer);

(OUTPUT Cardinality: 0) {...}

XOR(

UniformReal P(Perspective) {

InitRVObj(Method)

(INPUT Cardinality: 3)

USACERL TR FF-95/05 47

(INPUT: lo.hi (Real); stream (Integer))

(OUTPUT Cardinality: 0)
{... InitRVObj in RamdomNum ...}

GenerateContinuousRV(Method)

(INPUT Cardinality: 0)

(OUTPUT: (Real)) {...}

}■

Uniformlnt P(Perspective) {

InitRVObj(Method)

(INPUT Cardinality: 3)

(INPUT: low, high, str (Integer))

(OUTPUT Cardinality: 0)
{... InitRVObj in RamdomNum ...}

GenerateDiscreteRV(Method)

(INPUT Cardinality: 0)
(OUTPUT: (Integer)) {...}

Exponential P(Perspective) {

InitRVObj(Method)
(INPUT Cardinality: 2)
(INPUT: mu (Real); stream (Integer))

(OUTPUT Cardinality: 0)

{... InitRVObj in RamdomNum ...}

GenerateContinuousRV(Method)

(INPUT Cardinality: 0)

(OUTPUT: (Real)) { ...}

Normal P(Perspective) {

InitRVObj(Method)

(INPUT Cardinality: 4)
(INPUT: mu,sigma (Real); stream 1, stream2 (Integer))

(OUTPUT Cardinality: 0)

{... InitRVObj in RamdomNum ...}

GenerateContinuousRV(Method)

(INPUT Cardinality: 0)

(OUTPUT: (Real)) {...}

Gamma P(Perspective) f{

InitRVObj(Method)

(INPUT Cardinality: 4)

(INPUT: alph.beta (Real); stream"!, stream2 (Integer))

(OUTPUT Cardinality: 0)

{... InitRVObj in RamdomNum ...}

48 USACERL TR FF-95/05

GenerateContinuousRV(Method)

(INPUT Cardinality: 0)

(OUTPUT: (Real)) {...}

Beta P(Perspective) {

InitRVObj(Method)

(INPUT Cardinality: 6)

(INPUT: k1, k2 (Real); str1,str2, str3,str4(lnteger))

(OUTPUT Cardinality: 0)
{... InitRVObj in RamdomNum ...}

GenerateContinuousRV(Method)

(INPUT Cardinality: 0)
(OUTPUT (Real)) {...}

Triangular P(Perspective) {

InitRVObj(Method)

(INPUT Cardinality: 4)
(INPUT: a,b,c (Real); stream(lnteger))

(OUTPUT Cardinality: 0)
{... InitRVObj in RamdomNum ...}

GenerateContinuousRV(Method)

(INPUT Cardinality: 0)

(OUTPUT: (Real))}...}

Weibull P(Perspective) {
InitRVObj(Method)

(INPUT Cardinality: 3)
(INPUT: a,b (Real); stream(lnteger))

OUTPUT Cardinality: 0)

{... InitRVObj in RamdomNum ...}

GenerateContinuousRV(Method)

(INPUT Cardinality: 0)

(OUTPUT: (Real)) {...}

}
) /* end of XOR 7

Server (RandomNum with ALL)

id (Integer);

status (Real);
dependents (List);

USACERL TR FF-95/05 49

ServerObjlnit(Method)

(INPUT Cardinality: 0)

(OUTPUT Cardinality: 0) {...}

IsBusy(Method)

(INPUT Cardinality: 0)
(OUTPUT: (Boolean)) {...}

Makeldle (Method)

(INPUT Cardinality: 0)

(OUTPUT Cardinality: 0) {...}

MakeBusy (Method)

(INPUT Cardinality: 0)

(OUTPUT Cardinality: 0) {...}

GenerateServiceTime(Method)

(INPUT Cardinality: 0)

(OUTPUT: (Real)) {...}

SetQueue(Method)

(INPUT Cardinality: 1)

(INPUT: q (Queue))
(OUTPUT Cardinality: 0) {...}

ProcessToken(Method)

(INPUT Cardinality: 1)
(INPUT: part (Reference))
(OUTPUT Cardinality: 0) {...}

XOR(
FIFO P (Perspective) {
queue (Queue with FIFO Queue P);

LIFO P (Perspective) {
queue (Queue with LIFO Queue P);

Prio P (Perspective) {
queue (Queue with Priority Queue P);

}
); /* end of XOR 7

Token (Object) {

id (Integer);

arrivalTime (Real);

dueTime (Real);

systemArrivalTime (Real);

50 USACERL TR FF-95/05

setld (Method)

(INPUT Cardinality: 1)

(INPUT: id (Integer))

(OUTPUT Cardinality: 0) {...};

setArrivialTime (Method)

(INPUT Cardinality: 1)

(INPUT: at (Real))
(OUTPUT Cardinality: 0) {...};

setDueTime (Method)

(INPUT Cardinality: 1)
(INPUT: dt (Real))

(OUTPUT Cardinality: 0) {...};

setSystemArrivialTime (Method)
(INPUT Cardinality: 1)

(INPUT: at (Real))

(OUTPUT Cardinality: 0) {...};

View (Object with Display P) <

Server ViewControllerObj (Object) •

Model (Reference);

View (Reference);

AveServerUtilization (Real);

Update (Method)

(INPUT Cardinality: 0)
(OUTPUT Cardinality: 0) {...};

An instance of Server object will be:

Server 1 (Server with UniformReal P and FIFO P)

Note that there are two perspectives: UniformReal P and FIFO P, which need to be

specified in order to make an instance of Server. UniformReal P perspective is used

to specialize Server 1 to be a RandomNum object with UniformReal P perspective

(since Server object is a subclass of RandomNum with ALL perspectives inherited).

And FIFO P perspective is used to specialize Server 1 to be a server using a FIFO

queue (since FIFO P is defined in the Server object to distinguish the different type

of queue).

USACERL TR FF-95/05 51

DISTRIBUTION

Chief of Engineers
ATTN CEHEC-IM-LH (2)

ATTN CEHEC-IM-LP (2)

ATTN CERD-L

ATTN CECC-R

Defense Technical Information Center 22304

ATTN: DTIC-FAB(2)

12/94

